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Abstract

We present evidence that the natural rate of interest is buffeted by both permanent
and transitory shocks. We establish this result by estimating a benchmark model
with Bayesian methods and loose priors on the unobserved drivers of the natural rate.
When subject to transitory shocks, the median estimate for the U.S. economy is more
procyclical, displays a less marked secular decline, and is therefore higher following the
Great Recession than most estimates in the literature.
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1 Introduction

The natural rate of interest, or r∗, is a central concept in macroeconomics. It measures

the opportunity cost of investment in an economy producing at capacity, and it is typically

defined as the real interest rate consistent with stable inflation and output equating its long-

term potential (Wicksell, 1936). In real business cycle models, with and without nominal

or financial frictions, the natural rate of interest is time-varying and is driven by shocks to

either aggregate supply or aggregate demand.

As the natural rate of interest is unobservable, empirical researchers make assumptions

about the composition of r∗ in order to estimate its level. For example, in their seminal

contribution, Laubach and Williams (2003) model r∗ as driven by two processes: one that

affects aggregate supply through the growth rate of potential output (g) and another factor

(z) that captures disturbances to aggregate demand, such as shocks to household preferences.

They find evidence that both of these components are random walks.

In principle there is no clear theoretical justification why both drivers of r∗, g and z, need

to be non-stationary processes. In fact, theory suggests that shocks to aggregate demand,

such as fiscal or financial shocks, may weigh on aggregate demand only temporarily. In

this paper we re-estimate a benchmark model of r∗ under a looser set of prior parameter

restrictions in order to let the data determine the statistical properties of its components.

Using standard Bayesian methods and loose priors on the volatility parameters, our esti-

mates confirm earlier work suggesting that g (the growth component of r∗) is appropriately

modeled as having a unit root. However, our results also suggest that the non-growth com-

ponent of r∗ (z) should be modeled as having transitory shocks, which stands in contrast

to earlier findings. With transitory shocks to z, estimates of r∗ implied by our model are

markedly more volatile than those of previous studies; moreover we find the level of r∗ after

the Great Recession to be higher than commonly estimated in the literature.

There are methodological challenges when estimating models with latent factors. The
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standard practice under maximum likelihood estimation (MLE) (e.g. Laubach and Williams,

2003; Trehan and Wu, 2007; Clark and Kozicki, 2005) is to use the median unbiased estimator

of Stock and Watson (1998), which is designed to avoid the pileup problem (i.e. a tendency

for the maximum-likelihood estimates of certain volatility parameters to be biased toward

zero, see Stock, 1994). In this paper we use a Bayesian approach with uninformative priors

on reasonable regions of the parameter space to mitigate the pileup problem. We note that

the median unbiased estimator procedure can be viewed, from a Bayesian perspective, as

very precise (and asymptotically motivated) implicit prior beliefs about the volatilities of

the latent factors in order to mitigate the pileup problem. Bayesian methods allow us to

mitigate the problem under a less restrictive structure, making visible the effects of these

implicit priors on the final estimation of r∗.

The existence of transitory shocks to r∗ is economically important. Economic theory

does not prescribe r∗ to only be affected by permanent shocks. For example, as illustrated

by section 4.2 in Woodford (2003), in a representative agent new-Keynesian model, any

disturbance to the expected marginal rate of substitution–whether transitory or permanent–

affects the natural rate of interest. For central banks that use a short-term interest rate

as their main policy tool, the difference between r∗ and the real short-term rate provides

a measure of the stance of monetary policy. Our model estimates for the U.S. economy

deliver a more procyclical median estimated path of r∗ over the past several recessions. In

particular, our median estimate of r∗ implies that the natural rate of interest plummeted

during the financial crisis of 2008 but has moved back up over the past ten years to a level

seen in the periods following the past several recessions. This is in contrast to the most

recent point estimates in Holston, Laubach, and Williams (2017) in which r∗ fell during the

financial crisis and remains well below the levels estimated for earlier time periods.

Our results contrast with those of Laubach and Williams (2003) and Trehan and Wu

(2007), who do not find evidence of transitory shocks to r∗. Also, under looser priors, we

find that the data do provide some information on the volatility of z, in contrast to Kiley
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(2015), though uncertainty about this component remains significant. Our finding that

transitory shocks affect r∗ may also have consequences for Pescatori and Turunen (2016),

who estimate r∗ using Bayesian methods while attempting to decompose the drivers of z.

Our findings suggest that their use of comparatively restrictive priors, particularly on the

volatility parameters and the autoregressive parameters of z, may significantly affect their

results.

2 The r∗ Model

The estimated model draws on the New-Keynesian framework and features an intertemporal

IS equation and a Philipps curve relationship to describe the dynamics governing the output

gap and inflation as a function of the real rate gap. The six equations are:

ỹt = a1ỹt−1 + a2ỹt−2 +
ar

2
(r̃t−1 + r̃t−2) + σ1ε1,t (2.1)

πt = b1πt−1 + (1− b1)
4∑

i=2

πt−i

3
+ byỹt−1 + σ2ε2,t (2.2)

r∗t = gt + zt (2.3)

zt = ρzzt−1 + σ3ε3,t (2.4)

y∗t = y∗t−1 + gt−1 + σ4ε4,t (2.5)

gt = µg (1− ρg) + ρggt−1 + σ5ε5,t (2.6)

where y is log-real GDP, y∗ is log-potential GDP and ỹ ≡ y− y∗. Similarly, r̃ ≡ r− r∗ where

r is the real short-term interest rate and r∗ is the natural rate of interest.

The specification listed in equations (2.1) to (2.6) allows both g and z to be either

random walks or stationary AR(1) processes. We focus on two of the nested specifications

of the model, the baseline specification with ρg = ρz = 1 by assumption and an alternative

specification where we estimate ρz and assume ρg = 1. The baseline specification is identical
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to the model estimated in Holston, Laubach, and Williams (2017).1

This model relaxes some common assumptions in the DSGE literature. In particular,

parameters that are usually assumed to be constant, such as the growth rate of technology

and the risk-aversion of the representative household, may actually be subject to fluctuations.

Specifying the model in this way allows the data to inform the nature of these fluctuations.2

3 Data and Estimation

The data used in this analysis is the same as the US data used in Holston, Laubach, and

Williams (2017), and it is transformed in the same way. The sample runs from 1960Q1

to 2017Q2.3 Real GDP data are obtained from the BEA, inflation is calculated as the

annualized quarterly growth rate of the price index for personal consumption expenditures

excluding food and energy. We follow Holston, Laubach, and Williams (2017) in using a

4-quarter moving average of inflation in period t as a proxy for inflation expectations in that

period. The short-term interest rate is the annualized nominal effective federal funds rate,

where the quarterly value is constructed as the average of the monthly values. Prior to 1965,

we use the Federal Reserve Bank of New York’s discount rate.

We estimate the model in two ways, using Bayesian methods under loose priors and by

maximum likelihood as in Holston, Laubach, and Williams (2017). We see the three-stage

MLE process as a way of choosing a specific (and asymptotically motivated) degenerate

implicit prior over ratios of the volatilities: λg ≡
σ5

σ4

and λz ≡ ar
σ3

σ1

. In order to mitigate the

pileup problem, point estimates of these ratios are constructed in each of the first two stages

by estimating simplifications of the model.Those estimates λg and λz are then imposed during

the maximization of the likelihood function in the final step, which reduces the implied level

1We have also examined the other permutations of these settings. For example, we find that the data
supports the assumption in Laubach and Williams (2003) that g is a random walk. Results from a model in
which both z and g are estimated AR(1) processes are included in the online appendix.

2Some DSGE models allow for fluctuations in the natural rate akin to the reduced form model above.
For example, Lopez et al. (2015) presents a new-Keynesian model with a natural rate driven by time-varying
potential output growth and time-varying risk-aversion.

3As in Holston et al. (2017), we use the data from 1960 to construct the initial conditions from which we
begin to estimate the unobserved components of r∗, so our estimation begins in 1961.
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of parameter uncertainty.

The fully Bayesian estimation uses much less restrictive prior distributions on reasonable

regions of the parameter space, as discussed in DeJong and Whiteman (1993), Primiceri

(2005), and Kim and Kim (2018), to avoid the pileup problem. Formally, after specifying the

priors, we construct the likelihood from the linear-Gaussian filter output and use the random-

walk Metropolis-Hastings algorithm to generate draws from the posterior distributions of the

model parameters. Each draw of the parameters from the posterior distribution implies a

sampled path for the unobserved variables, including r∗t , as in Carter and Kohn (1994) and

Frühwirth-Schnatter (1994).4

3.1 Prior Distributions

The marginal prior distributions of the parameters are given in Table 1. These priors were

chosen with a mind toward being minimally informative.5 The priors on the standard devi-

ations of the unobserved shock processes play a critical role and we choose marginal priors

to be uniform between 0 and 5, in contrast to the common usage of inverse gamma priors in

the literature. While inverse gamma distributions have a domain that runs along the pos-

itive real line, their mass is concentrated in a fairly small area, and are therefore relatively

informative in the context of this model, as demonstrated by Kiley (2015). To avoid the

pileup problem we restrict λg and λz to take values in [0.01, 5], which represents much less

a priori certainty than previous studies.6 Regarding the prior of ρz, the choice of N(1, 1
2

2
) is

meant to reflect the a priori belief that the z processes is highly persistent and could have a

unit root.7

4Textbook treatments of this approach can be found in Geweke (2005) and Herbst and Schorfheide (2015).
The online appendix contains the state space representation of the model used in the estimation as well as
additional technical details and sources of information about the data.

5See the online appendix for additional detail.
6The implied prior distributions for λg and λz (the results of marginal priors of their components and the

restriction discussed above) along with the priors from Pescatori and Turunen (2016) and the MLE values
are shown in the online appendix.

7As noted by Sims (1988), the shape of the likelihood function is not changed by the inclusion of unit or
explosive roots, so there is no need to truncate the distribution centered at one.
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4 Results

Figure 1 displays the higher parameter uncertainty revealed by Bayesian estimation under

priors which are looser than the implicit priors used in the MLE procedure. The MLE

procedure fixes the ratios of the relevant volatility parameters (λg and λz) to specific values

displayed by the red lines. Under our Bayesian estimation these ratios are free to take values

between 0.01 and 5. The posterior distributions have modes which are not far from the

values used in MLE, but their standard deviations are considerable. Accounting for this

parameter uncertainty has implications for r∗, even in the baseline model.8

Figure 2 shows the effects of more completely incorporating parameter uncertainty on

the median estimate of r∗. The relaxation of the λg and λz restrictions imposed by the MLE

methodology generates a median path of the natural rate of interest which is more volatile

and procyclical than its MLE counterpart. We note that the level of uncertainty about r∗ is

considerable.

As seen in Figure 3, the majority of the uncertainty about r∗ comes from the non-growth

component, z, the uncertainty of which we now more fully appreciate. While the priors

on the parameters of both g and z are identical, the relative magnitudes of the credible

sets shown in the figure indicate that the likelihood function generates considerably more

concentration of posterior mass for the parameters of g relative to those of z.

As shown by panel (a) of Table 2, the increased uncertainty about z comes predominantly

from the wider range of plausible values for the volatility parameter governing its shocks,

σ3.
9 While the peak of the posterior distribution of σ3 in the baseline specification is near

the point estimate of the parameter under MLE, the distribution is skewed and the standard

deviation is fairly large. Under MLE, the process required to avoid the pileup problem via

8As a check, we estimated a version of the model that imposes, via degenerate priors, the MLE point-
estimates for λg and λz within the Bayesian estimation. When we did this, we recovered the same median
path of r∗ as in the MLE estimation.

9Importantly, our posterior distributions for the volatility parameters σ3 and σ5, shown in the appendix,
still show no signs of pileup.
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a point estimate of λz necessarily results in tighter restrictions on the potential values of σ3.

Bayesian estimation allows the pileup problem to be mitigated with less restrictions, revealing

that our uncertainty about z is large. Taking all this into account, we next reexamine a key

finding in the earlier literature: that z is a random walk.

Using the Savage-Dickey density ratio (SDDR) we find substantial statistical evidence

that the data prefers not to assume that z is a random walk. Dickey (1971) constructs an

exact Bayes factor comparing two nested models that differ only insofar as one model (here,

the baseline specification) fixes a model parameter at a specific value (ρz = 1), while the

other model (the alternative specification) estimates it. In such a case, the Bayes factor can

be written in terms of the output of only the unrestricted model:

Balt,baseline =
palt(ρz = 1)

palt(ρz = 1|Y )

where palt(ρz = 1|Y ) is the value of the pdf of the marginal posterior distribution for ρz

under the alternative specification at the point ρz = 1, and palt(ρz = 1) is the value of the

pdf of the prior on ρz evaluated at 1, also under the alternative specification.

The SDDR provides a very intuitive signal: when the weight of the marginal posterior

goes up relative to the prior, the data supports the assumption in the restricted model, and

vice-versa. As can be seen in Figure 4, the weight of the marginal posterior on ρz = 1 is

considerably lower than it is in the prior. The ratio, and thus the Bayes Factor in favor of the

alternative specification is 10.2, which according to Jefferys (1961), is “substantial” evidence

in favor non-permanent shocks to z. Kass and Raftery (1995), who develop their own scale

for Bayes factors label this as “positive” evidence in favor of the alternative specification.10

This result is robust to alternative prior specifications for ρz.

Panel (b) of Table 2 shows the Bayes factor in favor of either model (constructed using the

SDDR), along with other model comparison information from the two specifications under

10In both ranking systems, this grade of evidence is considered the second level, with the next level labeled
“strong” and further levels labeled “very strong” or “decisive.”
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both Bayesian and maximum likelihood estimation. We see that, in this model, the choice

of procedure imposed to deal with the pileup problem can flip model selection. The log

marginal likelihood value, constructed using the Newton and Raftery (1994) methodology,

finds values of -533 and -526 for the baseline and alternative specifications, respectively, also

evidence generally supportive of choosing the alternative model. While our findings about

z contradict those of Laubach and Williams (2003) and Trehan and Wu (2007), we confirm

that the divergence between our results and theirs is based on the more restrictive solution

to the pileup problem used when estimating this model by maximum likelihood. Replicating

that three-step process, we found that the log-likelihood value of the baseline model at the

maximum likelihood estimates is -518, while it is -517 under the alternative specification.

The Bayesian information criterium favors the baseline model over the alternative.

We find economic appeal in a z process subject to persistent, but transitory, shocks

because of its behavior in the period around, and following, the crisis. Under the baseline

specification (and in the MLE results) there was a fairly sudden decline in z, and thus r∗, in

2008. While many slow-moving phenomena could be invoked to bolster a strong prior belief

that z should be a random walk, these proposals need to align with the relatively sharp

movement in that time period. Figure 5 shows the median path of z under the alternative

specification and Figure 6 shows the corresponding estimate for r∗ when z is subject to

transitory shocks. In addition to the higher volatility and the much larger impact of the

Great Recession on the level of the median path of r∗, the post-crisis profile of r∗ is very

different than that of the baseline model, largely driven by the different dynamics in z.

Most notably, following the sharp dip in the Great Recession, the median path of r∗ has

generally trended in a positive direction, though it remained broadly below zero for several

years following the crisis. This is in contrast to the estimates from Holston, Laubach, and

Williams (2017) and others, where the natural rate descends in the 21st century and remains

at historically low levels through the end of the sample.11 The change to the specification

11A related concept, as discussed in Del Negro et al. (2017), is an explicitly long-run, rather than medium
term, r∗. A short discussion of the long-run r∗ from the alternative specification is included in the appendix.
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for z appears to have had very little effect on the estimate of g, a component of our final

discussion below.

4.1 Output Gap Implications

Our statistically preferred specification for z may have implications for economically impor-

tant objects such as the output gap. Figure 7 shows that while our baseline and alternative

estimates of r∗ are different from those under MLE, our estimates of the output gap are much

more in concert. Figure 7 also includes the estimate of the output gap available from the

Congressional Budget Office (CBO) and from the model of Pescatori and Turunen (2016),

who take signal from the CBO.

The CBO estimate may be considered an external check on model output as it can

represent a benchmark for judging our estimate of economic slack. While our Bayesian and

MLE estimates are similar to the CBO’s measure for much of the sample prior to 2000,

the estimates diverge at that point, with our measures indicating a higher level of resource

utilization in recent years. Figure 8 shows that these post-2000 differences are not the result

of dramatically different views of potential output growth by the different models over that

period. Rather, the figure shows that the recent divergence in output gap estimates is driven

by the CBO’s high estimate of potential output growth during a brief period in the late

1990s. This led to a shift in the estimated level of potential GDP, which results in a CBO

output gap estimate which ends our sample (mid-2017) at a negative level.

Figure 8 shows a remarkable similarity across the estimates of potential output growth

from the five sources. All of the model-based estimates lie well within the 90% credible set

from the baseline model and the CBO estimate lies within the set for the majority of the

time as well. Additionally, all the models appear to provide similar support for the idea that

there has been a secular decline in potential output growth in 21st century, as discussed by

Summers (2014), Eggertsson, Mehrotra, and Summers (2016) and others.

9



4.2 An Alternative Interest Rate and Sample Period

We examined two potential changes to the data used in our study which we summarize briefly

here.12 Under the first alteration, we construct the real interest rate using the shadow rate

from Wu and Xia (2016) rather than the federal funds rate. This change had very little

impact on the core results regarding transitory and permanent shocks to the components

of r∗ but yielded a small increase in the output gap in the last 10 years of the sample and

a decrease in the trend growth rate of output during the zero-lower-bound period. The

second, independent, alteration is a sub-sample exercise which drops the first 22 years of

data, beginning the sample in 1983 to look at the results from the model when data prior

to the Great Moderation is excluded. In this exercise, we still find evidence supporting the

conclusion that z should be subject to transitory shocks, but the Bayes Factor is significantly

lower. This is not because the z process estimated in the sub-sample is decidedly more

persistent (indeed, the mode and median of the posterior distribution of ρz actually decline

relative to the full sample estimates). Rather, it is due to increased overall uncertainty

about the z process when the model is estimated with significantly less data and a flatter IS

equation.13

5 Conclusion

This paper re-estimates a benchmark model under looser prior assumptions and finds differ-

ent median estimates of the natural rate of interest. We find that a more complete picture of

the parameter uncertainty in the model results in a higher median estimate of the conditional

volatility of r∗. We also find that the data prefers r∗ to be affected by transitory shocks,

in contrast to previous studies. Acknowledging the potential for persistent, but transitory,

shocks to r∗ will likely help to shape the search for its economic drivers.

12The appendix contains full estimation results for both, as well as additional discussion of the some key
differences we summarize here.

13See the appendix for additional detail.
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6 Tables and Figures

Name Domain Density Parameter 1 Parameter 2

a1 R Normal 0 2

a2 R Normal 0 2

ar R
− Normal 0 2

b1 [0, 1] Uniform 0 1

bY R
+ Normal 0 2

ρz R
+ Normal 1 1

2

σ1 [0, 5] Uniform 0 5

σ2 [0, 5] Uniform 0 5

σ3 [0, 5] Uniform 0 5

σ4 [0, 5] Uniform 0 5

σ5 [0, 5] Uniform 0 5

Table 1: The table presents the marginal prior distributions under the individual model
parameters for the alternative specification. The prior distribution parameters are the mean
(1) and standard deviation (2) for those with Normal distributions and the end-points of the
domain interval for uniform distribution. The domains of ar, bY , ρg and ρz are truncations
of the standard form of the prior density. In the baseline specification the prior distribution
of ρz was set to be degenerate at ρz ≡ 1. We restrict λg and λz to take values in [0.01, 5],
additional discussion of the prior distributions is included in the online appendix.
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Bayesian MLE

Baseline Alternative Baseline Alternative

a1 1.247 1.193 1.531 1.530
[0.97,1.51] [0.84,1.52] [1.36,1.70] [1.36,1.70]

a2 -0.327 -0.286 -0.589 -0.587
[-0.58,-0.07] [-0.59,0.05] [-0.76,-0.42] [-0.76,-0.41]

ar -0.116 -0.109 -0.070 -0.067
[-0.19,-0.06] [-0.18,-0.06] [-0.10,-0.04] [-0.10,-0.04]

b1 0.679 0.671 0.671 0.670
[0.57,0.79] [0.56,0.78] [0.60,0.74] [0.60,0.74]

bY 0.061 0.077 0.077 0.079
[0.03,0.13] [0.04,0.15] [0.04,0.12] [0.04,0.12]

σ1 0.405 0.282 0.355 0.365
[0.11,0.66] [0.08,0.57] [0.21,0.50] [0.21,0.52]

σ2 0.802 0.799 0.791 0.791
[0.74,0.87] [0.74,0.86] [0.75,0.83] [0.75,0.83]

σ3 0.457 2.024 0.160 0.172
[0.07,1.69] [0.67,3.95] [0.10,0.23] [0.10,0.25]

σ4 0.517 0.559 0.571 0.567
[0.1,0.64] [0.25,0.65] [0.48,0.66] [0.47,0.66]

σ5 0.054 0.047 0.030 0.030
[0.02,0.13] [0.02,0.11] [0.02,0.03] [0.02,0.03]

ρz 1* 0.710 1* 0.916
[0.31,0.89] [0.77,1.06]

(a) Estimation of the Parameters

Bayesian MLE

LL(θmed) Log Marg. Like. BF Log. Like. BIC

Baseline -520 -533 0.1 -518 1088

Alternative -516 -526 10.2 -517 1093

(b) Model Comparison Under Bayesian and MLE Methods

Table 2: Panel (a) shows the medians of the marginal posterior distributions for each of
the model parameters from the baseline and alternative specifications, along with the MLE.
The numbers in brackets represent the 90% credible set from the posterior distributions of
the parameters for the Bayesian estimation, and the 90% asymptotic confidence interval
for the MLE, the standard errors come from the third estimation stage. Panel (b) shows
the log-likelihood of the model evaluated at θmed, the medians of the marginal posterior
distributions from Panel (a) along with the model comparison statistics under Bayesian and
MLE methods. The Log Marginal Likelihood values are built using the Newton and Raftery
(1994) methodology, and the Bayes Factor (BF) in favor of a given model is built using the
Savage-Dickey density ratio of Dickey (1971). The Bayesian Information Criteria (BIC) is
reported for the two MLE estimates. *In the baseline specification under both estimation
methods ρz is set to one.
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Posterior λz (Baseline) Posterior λg (Baseline)

Figure 1: Posterior Distributions of λz and λg Under Baseline Specification

Notes: The blue bars conform the histogram of the posterior distribution of λz and λg.
The red lines stand at the median unbiased estimates used in MLE
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Figure 2: r∗ Path (Baseline Model)

Notes: The path of r∗ under the baseline model when ρg = ρz = 1. The solid blue line shows
the median path of the smoothed estimate and the blue-shaded area shows the 90% credible
set of the estimated path. The black dashed line plots the equivalent series under MLE. The
vertical shaded bars represent NBER-dated recessions. For reference, the standard error
from the MLE estimate of r∗ averages 1.1 percentage points.
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z (Baseline) g (Baseline)

Figure 3: The Paths of the Components of r∗ Under Baseline Specification

Notes: The paths of the components of r∗ under the baseline specification. The blue line
is the median estimate, the black dotted line is the equivalent series under MLE, the shaded
area represents the 90% credible set.
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Figure 4: An Illustration of the Savage-Dickey Density Ratio

Notes: The panel on the left shows the marginal posterior distribution of ρz under the
alternative specification (the solid blue line) and the prior distribution over the same interval
(the dashed red line). The vertical gray dashed line indicated where ρz = 1. The panel on
the right shows the same distributions expanded around the region where ρz = 1. The red
circle indicates the pdf value for the prior at ρz = 1, and the blue diamond indicates the pdf
value for the marginal posterior at 1.
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Figure 5: z (Alternative)

Figure 6: r∗ Path (Alternative)

Notes: The paths of z and r∗ under the alternative model when ρz is estimated. The solid
blue line shows the median path of the smoothed (two-sided) estimate and the blue-shaded
areas represent the 90% credible sets. The vertical shaded bars represent NBER-dated
recessions.
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Figure 7: Estimates of the Output Gap

Figure 8: Estimates of Potential Output Growth

Notes: Estimates of the output gap, Figure 7, and the corresponding level of potential
output growth, Figure 8 are shown along with comparable measures from other sources.
The solid blue lines show the estimates from the baseline specification, the dotted blue lines
show the alternative specification. The red dotted lines show the equivalent estimates under
MLE, as in Holston, Laubach, and Williams (2017). The black dashed lines are from the
estimates provided by the Congressional Budget Office (CBO), and the gray dash-dotted
lines are the estimates from Pescatori and Turunen (2016) (available 1983-2015). The blue
shaded area in Figure 8 represents the 90% credible set of the growth rate of potential output
in the baseline specification.
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Frühwirth-Schnatter, S. (1994, December). Applied state space modelling of non-gaussian
time series using integration-based kalman filtering. Statistics and Computing 4 (4),
259269.

Geweke, J. (2005). Contemporary Bayesian Econometrics and Statistics. Wiley Series in
Probability and Statistics. Wiley.

Herbst, E. and F. Schorfheide (2015). Bayesian Estimation of DSGE Models. Princeton:
Princeton University Press.

Holston, K., T. Laubach, and J. C. Williams (2017). Measuring the natural rate of interest:
International trends and determinants. Journal of International Economics 108, S59 –
S75. 39th Annual NBER International Seminar on Macroeconomics.

Jefferys, H. (1961). Theory of Probability (3 ed.). Oxford University Press.

Kass, R. E. and A. E. Raftery (1995). Bayes factors. Journal of the American Statistical
Association 90 (430), 773–795.

Kiley, M. T. (2015, August). What Can the Data Tell Us About the Equilibrium Real
Interest Rate? Finance and Economics Discussion Series 2015-77, Board of Governors of
the Federal Reserve System (U.S.).

Kim, C.-J. and J. Kim (2018). Trend-cycle decompositions of real gdp revisited: Classical
and bayesian perspectives on an unsolved puzzle. https://ssrn.com/abstract=2883438.

Laubach, T. and J. C. Williams (2003). Measuring the natural rate of interest. Review of
Economics and Statistics 85 (4), 1063–1070.

19



Lopez, P., J. D. Lopez-Salido, and F. Vazquez-Grande (2015, June). Nominal Rigidities and
the Term Structures of Equity and Bond Returns. Finance and Economics Discussion
Series 2015-64, Board of Governors of the Federal Reserve System (U.S.).

Newton, M. A. and A. E. Raftery (1994). Approximate bayesian inference with the weighted
likelihood bootstrap. Journal of the Royal Statistical Society. Series B (Methodologi-
cal) 56 (1), 3–48.

Pescatori, A. and J. Turunen (2016). Lower for longer: Neutral rate in the u.s. IMF Economic
Review 64 (4), 708–731.

Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy.
The Review of Economic Studies 72 (3), 821–852.

Sims, C. A. (1988). Bayesian skepticism on unit root econometrics. Journal of Economic
Dynamics and Control 12 (2), 463 – 474.

Stock, J. H. (1994). Unit roots, structural breaks and trends. In Chapter 46, Volume 4 of
Handbook of Econometrics, pp. 2739 – 2841. Elsevier.

Stock, J. H. and M. W. Watson (1998, March). Median unbiased estimation of coefficient
variance in a time-varying parameter model. Journal of the American Statistical Associ-
ation 93 (441), 349–358.

Summers, L. H. (2014, April). U.S. Economic Prospects: Secular Stagnation, Hysteresis,
and the Zero Lower Bound. Business Economics 49 (2), 65–73.

Trehan, B. and T. Wu (2007). Time-varying equilibrium real rates and monetary policy
analysis. Journal of Economic Dynamics and Control 31 (5), 1584 – 1609.

Wicksell, K. (1936). Interest and Prices. Macmillan, London. Trans. of 1898 edition by R.F.
Kahn.

Woodford, M. (2003). Interest and Prices: Foundations of a Theory of Monetary Policy.
Princeton University Press.

Wu, J. C. and F. D. Xia (2016, March). Measuring the Macroeconomic Impact of Monetary
Policy at the Zero Lower Bound. Journal of Money, Credit and Banking 48 (2-3), 253–291.

20


	Introduction
	The r* Model
	Data and Estimation
	Prior Distributions

	Results
	Output Gap Implications
	An Alternative Interest Rate and Sample Period

	Conclusion
	Tables and Figures
	References

