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1 Introduction

Mounting evidence suggests that the hump-shaped profile of aggregate consumption over
the life-cycle is a consequence of individual choice, and not an artifact of other factors such
as growth in family size or accumulation of durable goods or even general economic growth
during an agent’s life [Aguiar and Hurst (2005, 2007), Fernández-Villaverde and Krueger
(2004), Gourinchas and Parker (2002)]. The hump-shape runs counter to intuition regarding
the smoothing behavior of economic agents: one would expect consumers to save and dissave
so as to keep consumption relatively constant from year to year. Recent work in Aguiar and
Hurst (2005, 2007) points out that actual consumption levels may not fluctuate as much as
consumption expenditure, thus explaining the hump-shaped profile in aggregate consump-
tion expenditure as a shape aided by shopping, rather than a pure consumption pattern
alone. This paper proposes a complimentary hypothesis that a weakness in the relation-
ship between wealth and consumption expenditure could help to create such a profile in the
aggregate consumption patterns of US consumers. Credit-based shopping allows for the po-
tential of much more loosely accounted-for shopping practices and lends itself to approximate
(from an expenditure standpoint) shopping behavior. In particular, the hump shape arises in
a framework that includes uncertainty and information-processing constraints popularized
recently in the Rational Inattention (RI) paradigm of Sims (1998, 2003, 2006). Moreover, cir-
cumstances arise under which there is a nontrivial probability that the representative agent
fails to consume all his wealth prior to death despite knowing its timing precisely. 2

The simple life-cycle setting developed here uses much of the same technology of the Sims
(2006) two-period model, but with the addition of a trade-off allowing agents to give up
processing power for something of economic value. This paper focuses on the dynamics of
the information problem and the value of information-processing capacity, and demonstrates
anew that simple applications of uncertainty and information-processing constraints can
produce substantial changes in otherwise standard models.

Many papers in the life-cycle literature share the presumption that uncertainty regarding the
agent’s environment likely plays a role in the profile of consumption over time [e.g. Caballero
(1990), Carroll (1992, 2004), Deaton (1992), Luo (2004), Sims (2003)] 3 . How the agent
confronts this uncertainty is at the center of several attempts to resolve the consumption
puzzle. Most of these (excluding those of Sims and Luo) assume that the agent is aware of

2 This model studies aggregate consumption profiles, the agents discussed throughout the paper
are the representative agent in the model. An area of future research includes heterogeneous agents
(that is, agents with differing information-processing abilities or other characteristics that would
yield different optimal uses of information capacity). Here, the terms agent and representative agent
will be used interchangeably.
3 A recent addition to the literature, Tutino (2008), examines lifetime consumption and savings
within the context of a recursive RI model. This paper, and the device of finite time periods
combined with the aggregation across individual representative households generates the closest
analog to a RI version of the canonical life-cycle problem presented in section 3 because the solution
procedure can be one of solving the whole problem at the same time.

2



all information in the system at all times, even in cases where “all the information” includes
knowing complicated distributions over many variables. This represents a large abstraction
from reality that is accepted in the name of model tractability. On the other hand, as
demonstrated in Sims (2003), information-processing constraints produce results which look
more like observed data; a similar result characterizes this extension.

Another contribution of this paper is that it is the first to offer the representative agent an
opportunity exercise choice regarding the stock of his information-processing capacity. This
capacity decision is separate from how to optimally allocate the processing capacity that
is being utilized. We see that the agent chooses to forgo some of his processing capacity
in exchange for potential future income, and that the choice is not binary. That is, he
chooses to forgo some, but not all, in particular situations suggesting that there is a value to
information processing that could potentially be used to price certain information services
in future research.

The remainder of the paper is structured as follows: Section 2 contains a discussion of the
rational inattention problem applied specifically in this model. Section 3 describes the life-
cycle consumption problem and a brief description of its history. Section 4 lays out the
specifics of the model, while section 5 provides an analysis of the model results and discusses
the optimal allocation of information processing that leads to the hump-shaped behavior.
Section 6 concludes.

2 Rational Inattention and Approximate Decision-Making

The idea behind rational inattention can traced back at least as far as a 1978 address
to the AEA meetings by Herbert Simon, who titled a portion of his talk “Attention As
The Scarce Resource” (Simon, 1978, p. 13), and to work that Sims was conducting much
earlier than Sims (1998, 2003, 2006). Moreover, the idea is intuitive: as Sims points out,
“...modeling agents as finite-capacity channels...fits well with intuition; most people every
day encounter, or could very easily encounter, much more information that is in principle
relevant to their economic behavior than they actually respond to” (Sims, 2006, p. 2). What
rational inattention provides is a comprehensive framework for relaxing the assumption of
unlimited information-processing ability without abandoning the assumption that resource
are used optimally, and without introducing arbitrary frictions.

Rational inattention is not the limiting the information used by an agent in his or her
decision-making. Neither does it correspond to delaying or disguising the information either,
as with most information frictions. The central theme of rational inattention is one of opti-
mal choice regarding how to reduce uncertainty. Agents make decisions that affect how the
uncertainty in their world is reduced by choosing what to pay attention to: the agent has all
the current information at his or her disposal, but chooses optimally to not pay attention
some if it—thus the monicker. 4

4 An example of a recent, fully developed paradigm for information frictions is the “inattentiveness”
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2.1 A Generalization

The amount of information-processing required to solve economic problems depends on the
complexity of the problem, but even the simplest problems have processing requirements. To
see how information-processing constrained models differ from their unconstrained counter-
parts, consider the two-period model of Sims (2006). This is an undiscounted “cake-eating”
problem in which the agent takes a given amount of wealth, w, and divides it optimally
between consuming c in period one and w− c in period two. That is, for CRRA preferences,

max
c≤w

c1−γ + (w − c)1−γ

1− γ
,

for a given w. The solution to this problem is an optimal decision rule, denoted f , that
describes the optimal plan for the choice variable, c, given a value for the state variable,
w. That is, the solution is a one-to-one mapping from the state-space to the choice-space,
described by c∗ = f(w). The solution to the agent’s maximization problem here is given by:

c∗ = f(w) =
w

2
,

that is, the agent should consume half his wealth in each of the two periods. For a given
value of w, this describes a corresponding value for c. Even if wealth is characterized by a
probability distribution, the optimal f describes a mapping from each potential value of w
to a single corresponding value for c.

To set the stage for the information-constrained problem to come, consider a generalization of
the cake eating problem in which the cake (wealth) and bites of the cake (consumption) only
come in a finite set of discrete values c1, c2, . . . , cNc

and w1, w2, . . . , wNw
. Suppose further that

wealth is characterized by a probability distribution g(w). The decision rule, c∗ = f(w) =
w/2, becomes the method for generating a set of conditional distributions – one for each
wealth value. Each of these conditional distributions for consumption is degenerate, that is,
the joint distribution f(c, w) describes the same thing as the c∗ = f(w) = w/2: a one-to-one
mapping from state-space to choice-space.

Under this “generalization,” the agent’s optimization problem is to choose the joint distri-
bution f(c, w) to:

max
{f(ci,wj)}

Nc
∑

i=1

Nw
∑

j=1

c1−γ
i + (wj − ci)

1−γ

1− γ
f(ci, wj) (1)

of Reis (2006a,b), wherein price-setting producers and consumers update their information only
occasionally, but completely. Thus while inattention is the optimal response to a finite capacity to
process, inattentiveness results from an inability to acquire information frequently.

4



subject to:

Nc
∑

i=1

f(ci, wj) = g(wj) ∀ j = 1, . . . , Nw (2)

f(ci, wj) ∈ [0, 1] ∀ i, j (3)

f(ci, wj) = 0 for ci > wj. (4)

The properties of the problem and the optimum are qualitatively unchanged under this gen-
eralization. Suppose that the marginal distribution of wealth is triangular, with higher levels
of wealth more probable. The optimal decision rule is the joint distribution f(c, w) that de-
scribes the same one-to-one mapping that divides wealth into two halves and consumes one
in each time period. Under the generalization, however, this is accomplished by assigning
probability to specific (ci, wj) pairs. That is, given a distribution for wealth, the agent dis-
perses the probability weight g(wj) across the possible values {ci}

Nc

i=1 such that weight is only
allowed where ci ≤ wj. The optimal choice, as seen in figure 1, is to place all of the probability
of being at wealth node wj on the pair (ci = wj/2, wj), that is, f(ci = wj/2, wj) = g(wj).
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Fig. 1. A One-to-One Mapping via the Joint Distribution f(c, w).

Figure 1 represents the joint distribution of c and w over the [0, 1] interval when the (c, w)
space is discretized. The darkness of the boxes indicates the weight of probability on that
specific (c, w) pair. The darker the box, the higher the probability weight, as indicated
by the legend on the right-hand side of the figure. The boxes get darker as they progress
“northeast” because the (exogenous) marginal distribution of wealth, g(w), is triangular.
The solution, f(ci = wj/2, wj) = g(wj), demonstrates that within this generalization the
one-to-one mapping takes the form of creating a set of conditional distributions of c given w
that are degenerate at ci = wj/2.
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2.1.1 States, Decisions, and Constrained Mutual Information

The joint distribution of c and w in figure 1 shows a strong relationship between the vari-
ables; a one-to-one relationship to be specific. The tools of the rational inattention framework
can be used to create an approximate (one-to-many) decision-making paradigm by limiting
the strength of the relationship between state and decision variables through the concept of
mutual information. The key to this is the constrained mutual information; a measurement
of the amount of uncertainty about one variable that is reduced by observation of another.
In each period we will constrain the amount of mutual information agents can process be-
tween consumption and wealth. As this paper will be working in discrete distributions, we
demonstrate the mutual information of two discrete random variables x and y having joint
distribution f , identical N -point support, and marginal distributions p and g by

MI(x, y) =
N
∑

j=1

N
∑

i=1

f(xi, yj) · log[f(xi, yj)]−
N
∑

i=1

p(xi) · log[p(xi)]−
N
∑

j=1

g(yj) · log[g(yj)]. (5)

The value of MI(x, y) is equal to the sum of three components: beginning at the far right,
the entropy of the marginal distribution of x, the entropy of the marginal distribution of y,
and the entropy of the joint distribution of x and y. 5 Mutual information is a generalization
of correlation in that as the conditional distributions of x given y (or y given x) tighten
around a single x (or y), the amount of mutual information increases. Note that if x and y
were independent, then f(xi, yj) = p(xi)g(yj), and it is easy to see that MI(x, y) = 0. That
is, observing a random variable x independent of y provides no information about y and
vice-versa. Indeed, as the set of conditional distributions becomes degenerate, the amount of
mutual information increases toward a maximum. Mutual information is as large as it can
be in figure 1 because for each draw of w, a specific c value is determined, and vice versa.

2.1.2 Mutual Information and Information-Processing Capacity

The heart of the rational inattention framework is the idea that agents are incapable of pro-
cessing all the information related to their economic decisions. In models in which wealth is
the state variable, if the agent does not exactly know his wealth in each period, he is modeled
as having a distribution over wealth which stems from a noisy signal he has received. In the
rational inattention framework, the agent is also modeled as choosing the joint distribution
of states and decisions, in this case wealth and consumption. 6 This can be thought of as
stemming from the amount of attention that must be paid to prices in order to purchase
a specific value of consumption, rather than a specific bundle of goods. An exact level of

5 It should be noted that while log(0) is undefined, x log(x) is a continuous function on x ∈ [0,∞)
and it can be demonstrated via L’Hôpital’s Rule that lim

x→0
x log(x) = 0.

6 Because the wealth distribution is fixed for a given time period, what is being chosen is actually
a set of conditional distributions of consumption given wealth.
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consumption spending can be met, but in order to do so a large investment of information-
processing capacity must be made: prices must be compared and calculated, expenditures
within the time period must be accounted for precisely and updated continually. All of this
is possible, but it requires processing many small pieces of information. Processing this in-
formation tightens the conditional distributions of consumption given wealth, moving the
agent closer to a one-to-one mapping between consumption and wealth. 7

The mutual information constraint is literally limiting the amount of information that can
be known about wealth by observing consumption (and vice-versa). This does not need to
limit the interpretation of the mutual information constraint. Rather than thinking about
this strictly from the point of view that an observation about consumption informs the agent
about his wealth, think about mutual information as being an element in a cohesive model of
“close-enough” decision-making. The agent is aware of his wealth, but only approximately,
and he is aware of his consumption, also approximately. The “tightness” of the mapping
between states and decisions is determined by the mutual information constraint. That is,
the mutual information constraint controls how approximately a decision is made in this
model, in addition to literally describing how much wealth-information can be discovered
from consumption.

The rational inattention framework uses the metric of mutual information to quantify the
amount of information-processing capacity the agent is using to solve his optimization prob-
lem. By placing a constraint on mutual information, the framework limits the strength of
the relationship between c and w by limiting the precision with which either variable can
be understood by the agent. As the amount of information the agent can process is reduced
from the amount required to produce the one-to-one relationship described in figure 1, the
agent must decide how best to allocate the finite resource of processing capacity across the
space of his choice variable. An important result of Shannon (1948) should be noted: the
information-processing capacity constraint will always bind when the amount of mutual in-
formation allowed is less than or equal to the amount of mutual information required for
an optimal unconstrained mapping. The agent will use all available capacity to process the
information in his environment, thus capacity equals the amount of information processed. 8

7 The information-processing requirement of such small decisions as an aggregate consumption-
savings decision could feel to the reader as an overly-complicated apparatus for such a small,
well-understood problem. Part of the parsimonious nature of the RI paradigm is not displayed
in the current literature because the tools are still being developed. Using concepts such as total
correlation (a multi-variate mutual information analog), the author hopes in the future to examine
much more complicated problems including multiple dimensions of decision-making for an agent,
without changing the basic setup of the model. The agent will still draw upon the single pool of
attention-resources to solve all his problems.
8 The problem faced by agents in an RI model is a close analog to what information theorists call
the “optimal coding” problem. This problem is one of fitting a message of size X through a channel
with capacity Y < X. It is shown in the information theory literature that there is an optimal way
to code any message sent through such a channel such that it will fill the channel’s capacity and
represent the message with the minimum loss. The agent’s task is to choose the optimal way to
filter the larger amount of information he or she has been presented with into a small amount of
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The agent’s optimization problem in the information-processing constrained universe is the
same as the one detailed in equations (1) through (4) above, with the addition of the following
constraint on the amount of mutual information in the model:

MI(c, w) ≤ κ (6)

As the amount of information-processing capacity (κ) decreases, the effect on the agent is
similar to that of increasing the noise in a signal-extraction version of the same problem. In
the past, economic models have tried to explain the difference between theory and empirical
observation in many models by assuming the existence of an exogenous noise that compli-
cates the understanding of the state of the model. The rational inattention framework does
something similar to this by describing an environment in which the “noise” is endogenously
determined rather than exogenously given: it arises from the agent’s inability to accurately
assess the state of the model because he does not have the information-processing resources
to do so.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

Consumption

κ = 2

 

W
ea

lth

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(a) High-Cap. f(c, w) Choice

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

Consumption

κ = 1.5

 

W
ea

lth

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(b) Medium-High-Cap. f(c, w) Choice

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

Consumption

κ = 1

 

W
ea

lth

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(c) Medium-Low-Cap. f(c, w) Choice

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

Consumption

κ = 0.5

 

W
ea

lth

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(d) Low-Cap. f(c, w) Choice

Fig. 2. Optimal Choice of Joint Distribution f(c, w) Given Triangular g(w) for Various Levels of
Information-Processing Capacity.

“encoded” information, that gets across the general message of the data without every last detail.
This gives a sense of how rational inattention can be leveraged to create a framework for modeling
agents who are making decisions under a “that’s-close-enough” style of thinking.
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Figure 2 demonstrates the effect of lowering the information-processing capacity: a discretiza-
tion of the consumption choices by the agent. In panel 2(c), the agent chooses to place no
probability weight on consuming at the level of, for example, 0.275. The agent’s noisy signal
for wealth generates consumption behavior that does not as closely track potential differ-
ences in wealth as the information-processing unconstrained model would. That is, there is
a range of possible wealth levels that could result in a level of consumption, and also a range
of possible consumption levels that correspond to a given potential wealth level. This is a
many-to-many mapping rather than a one-to-one mapping, but still describes how the agent
chooses consumption based on both his information regarding wealth and his preferences. 9

3 The Life-Cycle Model

The canonical life-cycle model has no growth in income or household size, no borrowing, no
shocks to the income stream or preferences, and a certain ending period. The agent has a
constant income, no initial savings, discounts the future geometrically, and has no uncertainty
regarding the future. That is, a consumer with period utility of consumption, ct, given by
U(ct), discount rate β, initial wealth W0, period income of yt, savings of St, and facing a
constant interest rate (1 + r), chooses c1, c2, . . . to

max
{ct}Tt=1

T
∑

t=1

βtU(ct)

subject to:

Wt+1 = (1 + r)Wt + yt+1 − ct+1, t = 1, . . . , T − 1

St ≥ 0, t = 1, . . . , T

This “stripped-down” life-cycle model [demonstrated in Modigliani (1986), and dating back
to the mid-50’s] is a textbook staple and produces the well-known result in figure 3, 10 of

9 Recall that the optimality of the choice of f(c, w) is a function of the preferences of the agent.
The MI constraint would bind for many different specifications of f . For example, as κ decreased,
the agent could simply “blur” the diagonal line to weaken the relationship between consumption
and wealth until MI ≤ κ. But, the shape of the distribution is the result of the agent’s preference
for a “lumpy” marginal distribution of consumption. Note that the bottom-right panel of figure 2
indicates that the marginal distribution of consumption places most of its weight on a single value a
little below the optimal consumption value that would correspond with the mean of the triangular
wealth distribution in the unconstrained model.
10 This is a picture of the result for β(1 + r) = 1. Additionally, U needs to be monotone increasing
and concave, in this case, it is CRRA. In general, the path of consumption will increase or decrease
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consuming a fixed fraction of life-time wealth in each period.
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Fig. 3. The Stripped Down Life-Cycle Model

What is observed in the data is clearly different from figure 3; as one recent study put it:
“...total consumption expenditures, as well as expenditures for non-durables and durables
display a significant hump over the life cycle, even after accounting for changes in family
size,” [(Fernández-Villaverde and Krueger, 2004, pg. 2)].

The framework presented here can produce the observed hump-shape without the use of
income growth, changes in household size, non-geometric discounting, adjustment costs, or
many of the other common mechanisms imposed to generate these results. With very few free
parameters, the uncertainty induced through approximation constrained by mutual informa-
tion can qualitatively replicate the observed hump. The only changes to the canonical model
are the introduction of uncertainty to income and wealth, and the approximate mechanism
by which agents can choose how and, in this model: if and when, they would like to work to
resolve this uncertainty.

4 A Life-Cycle Model with Information-Processing Constraints

What is the value of a unit of information-processing capacity? I address this question in
two ways.

First, it is known from Shannon (1948) that an information channel of any capacity can be
optimally used by any signal. 11 Thus, no matter the amount of channel capacity an agent
has, the agent will fill that amount regardless of how “complex” their decision is. Thus, an

depending on the value of βR; see e.g. Yaari (1964).
11 See footnote 8 on page 7 concerning information theory’s “optimal coding problem.”
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additional tool must be used to evaluate how much it is worth to the agent to give up some
of that capacity.

Second, a large number of services exist to collate, cull, and organize information for the
purposes of presenting the clearest picture of any topic to an end-user and customers pay for
this service. How much is it worth? Here, within a consumption-expenditure model, there
is some strong similarity with the Aguiar and Hurst (2005, 2007) shopping-time literature.
Information-processing can be thought of as encompassing a broad range of activities or
thought processes related to the consumption expenditure decision, rather than a specific
measure like shopping time. For example, it is possible to purchase groceries over the internet
and have them delivered to a home. While Aguiar and Hurst (2007) demonstrate that there
is a tangible return to time spent shopping for goods in grocery stores, internet services
such as this reduce the amount of time shopping without limiting the amount of information
gained, because the information has been pre-processed and organized in a more efficient
manner. One can compare across stores without leaving their desk, compare final costs of
bundles without visiting multiple stores, etc., if they have paid to access this information-
processing service. 12 One possible way to do this is to consider an environment in which the
agent has the opportunity to divide his time in the current period between two activities:
time devoted to processing information related to the current consumption-wealth decision,
and time devoted to increasing future income.

The division of time spent in the current period on the two activities is represented by the
parameter, αt ∈ [0, 1], which is chosen by the agent. Current-period information processing
activities can be thought of as time spent balancing one’s checkbook or checking one’s debit
card balance, as well as clipping coupons, checking internet sites for sales, comparison shop-
ping within and across similar stores, determining where the lowest gas prices are locally,
etc. The maximum fraction of time that can be spent in period t is αt = 1. The formula for
period t processing capacity is written:

κt = αtκ
M , t = 1, . . . , T (7)

where κM is the maximum information-processing capacity of the agent. As αt increases, the
agent spends more time processing information.

The other side of the tradeoff is the expected income of the agent in the following period.
One can think about the intuition of this side of the tradeoff in the following way: this is
time spent working overtime, or time spent reorganizing an investment portfolio, or time
spent playing golf with the boss, or anything that is likely to increase the expected value
of next period’s income. Here, income is modeled in a fairly simplistic way: period income
arrives as a distribution over K nodes that are fixed for the entire lifetime. There is no

12 Purchasing the service described here boils down to having internet access in most cases, but
there exist levels and speeds of that access. The point is simply that time, effort, and money can
be interchanged here on a more parsimonious level than shopping time because the returns to
information-processing can be more widely realized.
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growth in income in this model. By spending time to improve income prospects, the agent
shifts probability from lower income states to higher income states for the next period. In
each period, income takes one of K values, er, r = 1, . . . , K. If in the previous period all
effort was devoted to information processing (αt−1 = 1), the income distribution at time t
is uniform. As αt−1 decreases, probability is shifted toward values as depicted in figure 4,
according to the following formula for the distribution of per-period income:

bt(er|αt−1) =
r2(1−αt−1)

K
∑

s=1
s2(1−αt−1)

. (8)

where r is a node index and the summation over s guarantees that the income distribution
sums to one. This distribution has the property that lower-α distributions stochastically
dominate (to first order) higher-α distributions. 13
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Fig. 4. An Example of the Income Process When e1 = 0, e2 = 1, etc.

In each time period, the agent will have the opportunity to vary his total pool of attention, as
well as how it is used. This is important because to date, work in rational inattention assumes
only an exogenous information processing constraint that binds. The intuition behind the
binding constraint is obvious: no one can process all the information available to them.
However, one could consider devoting more time to information processing than he or she
does currently. The flexibility must be capped such that no one can process all information,
thus the κM parameter; but an important addition to the RI literature is the concept of
“paying” for additional processing capacity, which is the central idea behind the model
components described in equations (7) and (8). By beginning to analyze the value of a unit
of information-processing capacity, we can move toward models that consider the ways in
which the market helps agents solve their optimal attention-allocation problem.

13 Technical Appendix A discusses the relative merits of this income process in response to questions
regarding some potential alternatives. It is included for the benefit of the referee.
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4.1 The Agent’s Problem

The agent has the same period utility function as in the canonical model:

U(c) =
c1−γ

1− γ
.

The objective function, however, is the generalization described in section 2.1: the choice
variable is the joint distribution of consumption and wealth in each time period and the
objective is to maximize lifetime expected utility. The choice variable, the joint distribution
over consumption and wealth in each period, is a choice of probability weights on a fixed
domain of (c, w) pairs. That is, the agent is choosing a set of probabilities for ci and wj,
i, j = 1, . . . N : f(ci, wj)’s, which means that agents are placing weight on points, not choosing
the points themselves. The grids of support for consumption and wealth are identical, and
the points are evenly spaced. The problem is to choose α and the probabilities at each date
to

max
{ft(ci,wj),αt}Tt=1

T
∑

t=1

N
∑

i=1

N
∑

j=1

βtU(ci)ft(ci, wj). (9)

In choosing the weights, the agent has a standard budget/borrowing constraint in that he is
unable to consume more than his available wealth. That is, in placing weight on consumption-
wealth pairs, he is unable to assign positive probability to situations where consumption
exceeds wealth:

ft(ci, wj) = 0 for ci > wj, t = 1, . . . , T. (10)

Also, the standard constraint regarding probability weights must hold

0 ≤ ft(ci, wj) ≤ 1 , i = 1, . . . , N ; j = 1, . . . , N ; t = 1, . . . , T. (11)

Additionally, recall that the model is one of having a distribution over wealth and making
choices that are sets of conditional distributions of consumption given wealth. This is modeled
as the choice of a joint distribution that is restricted to agree with the marginal distribution
of wealth. Therefore,

N
∑

i=1

ft(ci, wj) = gt(wj) , j = 1, . . . , N ; t = 1, . . . , T. (12)
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4.2 The Information-Processing Constraint

The information-processing constraint is a per-period constraint. That is, the mutual infor-
mation between consumption and wealth is restricted to be less than the total capacity κt

in each time period. The mutual information calculation in this discrete-distribution case is
identical in form to that of (5):

N
∑

j=1

N
∑

i=1

log[ft(ci, wj)] · ft(ci, wj)−
N
∑

i=1



 log

(

N
∑

j=1

ft(ci, wj)

)

·
N
∑

j=1

ft(ci, wj)



 (13)

−
N
∑

j=1

log(gt(wj)) · gt(wj) ≤ κt , t = 1, . . . , T

where the second term is the entropy of the marginal distribution of consumption that results
from choices in the joint.

4.3 The Wealth Transition

The challenge in the dynamic RI framework is the transition of the state variable. Because the
state variable in the general framework is a distribution, as is the choice variable ft(ci, wj),
determining the next period’s distribution of wealth is a matter of determining the probability
of being at each potential wealth node.

The wealth distribution is fully determined by the joint distribution of consumption and
wealth in the past period and the distribution of per-period income in the current period.
Current income is independent of prior wealth and is received prior to any consumption
decision. That is, the timing works as follows: The choice variable in period t−1, ft−1(ci, wj),
is combined with the current period’s income distribution, bt(e) during the working portion
of the agent’s life, to determine his current marginal distribution of wealth. In the retired
portion of the agent’s lifetime, the consumption-wealth joint distribution in the previous
period fully determines the wealth marginal distribution in the current period. The equation
for the transition of the marginal distribution of wealth during the employed portion of the
lifetime is

gt(wj) =
min(K,j)
∑

r=1



bt(er) ·
Dt−1
∑

p=j−r+1

ft−1(cp−j+r, wp)



 , t = 2, . . . , R− 1; j = 1, . . . , N, (14)

with the transition during retirement being given by
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gt(wj) =
Dt−1
∑

p=j

ft−1(cp−j+1, wp), t = R, . . . , T ; j = 1, . . . , N, (15)

where K is the number of nodes in the income distribution, R is the first period in which the
agent is retired, N is the number of grid-points in the support of both the consumption and
wealth distributions and Dt−1 guarantees that the correct diagonals of the f distribution are
being used in the calculations, see figure 5. The wealth transition represented in equations
(14) and (15) are facilitated by the choice of a specific “gridding” of the supports for the
discrete distributions involved in the model.

The support for the wealth and consumption distributions in this model is a pair of identical,
N -point grids that begin at zero and increase in equally spaced increments. The support for
the income distribution is the first K nodes of the support of the wealth and consumption
distributions. By using the same support for all the distributions, we keep the state space
as small as possible for a given set of distributions. The transition from the current period
wealth distribution (gt(w)) to next period’s wealth distribution (gt+1(w)), given the choice
of the joint distribution ft(c, w) and per-period income distribution bt+1(e|αt) is outlined in
figure 5. The process is as follows: for a given node within the future wealth distribution (for
example w = 1, in figure 5’s example), we find the probability by looking for all the possible
combinations of current wealth, consumption, and income that could bring us to that point,
and sum the probabilities of those events.

This paper is interested in examining the aggregate phenomena regarding the consumption
hump observed in the cross-sectional data and therefore uses each period’s simple average
across potential consumption values for the representative agent. Each period, the repre-
sentative agent makes his f(c, w) choice and receives a draw from the resulting marginal
distribution of c. A simple average of these values is obtained to examined the aggregate
life-cycle phenomena seen in cross-sectional data. The aggregated consumption point is used
in the transition for the representative agent because it simplifies the calculations while
allowing examination of the aggregate result.

Figure 5 outlines the interaction between each of the three distributions involved in forming
the distribution of wealth in a given time period: the state variable gt(w), the current income
variable bt+1(e), and the choice variable ft+1(c, w). Note first how the period t distribution
of wealth, gt(w), restricts possible forms of the period t joint distribution. The columns in
the f matrix composed entirely of zeroes and surrounded by dashed boxes represent the
restriction in the joint distribution due to the fact that the marginal distribution of wealth
has no probability weight on those wealth values. Therefore, the choices available to the
agent regarding ft(c, w) are as follows: for each wealth level wj, the conditional distribution
for consumption divides the weight from gt(wj) among the feasible elements of ft(ci, wj).
This is done in period t under the processing constraint that the mutual information of c
and w not exceed κt, while also choosing αt in order to balance the benefits of increased
processing capacity with increases in expected future income. The choice of αt fully deter-
mines the weights in bt+1(e) as well. Once ft(c, w) and bt+1(e) have been determined, we have
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determined the marginal distribution of wealth in period t + 1. The probability weights of
period-t based decisions are combined thusly in order to determine the weights in gt+1(w):
Take, for example, gt+1(w = 1). There are two and only two ways to get to wt+1 = 1 in
a borrowing-constrained model: The first is to consume everything in period t and receive
an income of one at the beginning of period t + 1. The second is to consume all but one
unit in period t and receive no income at the beginning of period t+ 1. Figure 5 focuses on
the first of these two possibilities by summing the probability of all the consumption-wealth
combinations that leave behind zero post-consumption wealth in period t (the solid outline
around the main diagonal), and multiplying that by the probability of receiving one unit of
income in period t + 1. A similar calculation characterizes post-consumption wealth of one
and income of zero (the dotted outline around the first off-diagonal). These two calculations
are then summed to arrive at the total probability of being at wt+1 = 1. It should be noted
that the specific values in the ft matrix of figure 5 in no way represent an optimal choice
and are simply for illustrative purposes.

Regarding information concerning the next period’s wealth, note that “. . . the agent must
allow some noise to affect the choice of c in the current period, but can use the noisy
observation that entered determination of c to update beliefs about next period’s w” [(Sims,
2006, p. 18)]. This is accounted for in equations (14) and (15) and clearly reflected in figure 5.
That is, the restriction on information processing in the current period constrains decisions
regarding consumption, but also effects the information known about the following period’s
wealth. Where attention is focused by the agent (in the wealth-consumption space) in the
current period will have an impact on the precision of the agent’s wealth distribution in the
following period(s).

4.4 Parameters and Initial Conditions

In the analysis that follows, the life-cycle is divided into T = 8 periods, where the agent
is employed for six periods and retires in period R = 7. The life-cycle is assumed to begin
during the working portion of life and we assume that it takes place during ages 25-80,
meaning that a model period is just under seven years and β = 0.96

55

8 ≈ 0.76. The initial
state, g1(w), is assumed to be a flat one-period income distribution, with the exception that
there is no weight placed on the w1 = 0 node. We want to be able to analyze preferences with
higher risk aversion, and therefore do not want to force agents to absorb zero consumption
in the initial state. In future periods, there can be probability on a per-period income of
zero, but agents with higher-γ values choose never to allow this to become a problem.

The value for N (the number of nodes in the wealth, and therefore also consumption, grid) is
determined by the value for K (the number of nodes in the income grid) and the retirement
age R in this model. In each period, the income received adds to potential existing wealth
and the maximum possible value of wealth increases. Therefore, the total size of the wealth
and consumption grids is given by N = (R− 2)(K − 1) +K, and in the figures that follow,
K = 9, making N = 49.
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4.5 The Solution Method

As in Lewis (2009), this problem is handed over to a numerical optimizer. The optimization
is performed using a combination of programs known as AMPL and KNITRO. AMPL is a front
end for many powerful optimizers, one of which being KNITRO. By front end we mean the
following: Problems are entered into AMPL via a very explicit system which essentially requires
nothing more than copying the objective function in equation (9) as well as the constraints
in equations (7), (8), (10)-(15) into a file exactly as they appear above. Once the problem
has been described to AMPL it performs what is called pre-solve, which looks at the problem
and does what it can to eliminate complexity from a hill-climbing perspective by performing
basic exercises such as solving for equality-constrained variables and so forth. Finally, AMPL
performs what is known as automatic or algorithmic differentiation. The speed and accuracy
of any optimizer depend on the information available about the hill being climbed. Automatic
differentiation (AD) provides the gradients without the truncation errors of a procedure like
divided differencing or the excessive memory usage of symbolic differentiation. AD is best
thought of as a close cousin of symbolic differentiation in that both are the result of systematic
application of the chain rule. However, in the case of AD, the chain rule is applied not to
symbolic expressions but to actual numerical values. 14

Given the specifications for K, R, and N above, the number of free parameters (5882, after
accounting for adding-up and zero-restriction constraints) seems very large. Sims had 345 free
parameters and needed 11 minutes. However, using AMPL/KNITRO on his problem [See section
2.1 above; see Lewis (2009) for more detail regarding the numerical optimization issues.]
required 1-2 seconds. The 5882-parameter problem of this section requires about 2 minutes.
The problem itself is straightforward from a numerical optimization standpoint except for
the pre-retirement transition of wealth probabilities, specifically elements pertaining to per-
period income. With the exception of αt, the problem is a very well-posed optimization
problem. The objective is linear, and the constraints would be convex if not for the effect of
α on per-period income (that is, the trade-off variable accounts for eight of the 5800+ choice
variables). Thus, the problem does not appear to be badly behaved. Several specifications of
the model have been tested with dozens of random starting points for both ft(c, w) and αt,
and always within each specification, optima were identical across starting values.

5 Analysis and Results

The addition of uncertainty and information-processing constraints to the canonical model
results in a clear hump-shape in the aggregate consumption path, as indicated in figure 6.
The initial slope of the consumption hump is the result of “buffer-stock” style savings early
in the life-cycle designed to protect again low wealth states in the future. The downward

14 For a discussion on this and further exposition of AD, see Griewank (2000) and Rall (1981). For
a discussion specific to its application within AMPL, see Gay (1991).
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Fig. 6. The Path of Aggregate Consumption Over the Life-Cycle.

slope at the end is the result of a struggle between the desire to consume as much as possible
in each period and the desire to avoid a large probability of being left with zero wealth in
the final period. This behavior is the result of unresolvable uncertainty on the part of the
agent.

To understand where this hump-shape comes from, we examine the impact of decreasing the
maximum information-processing capacity level, κM . A note about discounting and returns:
in this model the gross rate of return is one making the value of βR ≈ 0.76. As has been
documented in the life-cycle literature [see, e.g. Yaari (1964)], the path of consumption in
the canonical model will only be flat for βR = 1, while βR > 1 leads to growth and βR < 1
leads to decline. Therefore, when the αt trade-off is eliminated and the infomation-processing
capacity is made very large, we would expect the consumption path to decay, as indicated
in figure 7.

As the information-processing constraint is tightened, we see a clear hump-shape emerge in
the aggregate consumption path, as seen in figure 8.

It is important to remember that the agent never has exact knowledge of his wealth or income.
This unresolvable uncertainty due to information-processing constraints is what gives rise to
the hump. Careful examination of the differences in the decay of consumption in closing time
periods shows that while the unconstrained model (figure 7) has a decrease in consumption,
the information-processing constraint clearly plays a role in the profile of the decrease (note
the change in the profile of the decrease in panel 8(a) compared to figure 7).

The downside of the hump is partially created by the fact that the no-processing-constraint
model in which βR < 1 has a natural downward slope. However, we can see that the both
sides of the hump clearly are produced by the information processing constraints even in the
more standard universe of βR = 1, in figure 9.
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Fig. 7. The Path of Consumption for αt = 1, ∀ t, and κM = 10.

The feature of the model that is important is that information-processing constraints create
both precautionary saving and dis-saving. The agent in the model is scaling back his or
her consumption more dramatically than they would in the event that they knew their
wealth exactly and could control their consumption precisely. Figure 9 demonstrates that
this “precautionary dis-savings” generates a downside to the consumption hump without
the aid of the normal consumption decay implied by βR < 1.

The particular consumption path in figure 6 is based on an agent who has fairly low risk
aversion: CRRA utility with γ = 0.5. As would be expected, the consumption behavior of
the agent changes as risk aversion rises, as demonstrated in figure 10: more risk averse agents
are more frugal early in life and consume more in retirement as a result.

From figure 11 it is seen that risk aversion changes result in very different behavior during
the “employed” portion of the life cycle. Careful examination of the first-period marginal
distribution of consumption reveals that the more risk averse agent (γ = 2) chooses to place
probability on only the lowest positive consumption point, regardless of the level of wealth.
The other two parameterizations, γ = 0.5 and γ = 1, spread probability across multiple
potential consumption levels. The three initial consumption strategies summarized in the
first panel of figure 11 require different levels of information-processing capacity. While the
consumption strategy of the agent when γ = 0.5 requires some processing capacity (he
keeps roughly a third of his potential capacity), the strategy of comsuming the lowest level
possible requires almost no information-processing capacity, and the γ = 2 agent chooses α1

accordingly, (see Table 1).

Figure 12 displays the joint distribution of consumption and wealth in the first period. Panel
12(a) is analogous to previous RI treatments in which the information-processing capacity of
the agent is fixed exogenously. Panel 12(b) depicts the more general case in which the agent
optimally chooses αt. In each figure, as in the joint distribution figures of section 2, darker
boxes indicate heavier probability weight, with the key to the value of the joint pdf given in
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Fig. 8. Aggregate Consumption Path for Decreasing Levels of Information-Processing Capacity,
Given a Fixed αt = 1 for All Time Periods.

γ = 0.5 γ = 2.0

α1 0.3 10−3

Table 1
Values of Tradeoff Parameter, α, in the First Period.
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Fig. 9. Aggregate Consumption Path for Decreasing Levels of Information-Processing Capacity,
Given a Fixed αt = 1.
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Fig. 10. The Path of Aggregate Consumption Over the Life Cycle for Different Risk Preferences.

the legend to the right of each distribution.

To understand the figure, consider the γ = 2 case in panel 12(a). The representative agent
is choosing to save in the first period, regardless of wealth level. This is seen by the solid
bar on the lowest positive consumption node, indicating that he is placing all his probability
on consuming at the lowest non-zero level. With lower risk aversion (γ = 0.5), the agent in
panel 12(a) chooses to place probability on higher levels of consumption for higher levels of
wealth. For example, the consumption distribution conditional on the wealth level just above
0.1 places probability on five possible consumption points, with the majority of the weight
being placed on 0.1. It can be seen in this panel that given lower risk aversion (γ = 0.5), the
agent will assign positive probability to several consumption points that are on the feasibility
boundary. This is because unlike the higher risk aversion parameterizations, consumption of
zero is not penalized nearly as heavily.

The two panels in figure 12 allow analysis of the information-processing capacity and income
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tradeoff. By fixing α1 = 1 we can examine how the agent’s behavior changes when he does
not have the ability to trade information-processing capacity for expected income in period
two. By looking at the γ = 2 panels of both figure 12(a) and 12(b), we see that the agent
does not wish to use any of his available processing capacity. As a result, when offered the
trade of information-processing capacity (something he does not need) for future income
(something he wants very much), it is obvious that he will give up much of his processing
capacity except for enough to know where the lowest positive consumption node is located.
That is, the choice made by the risk averse agent when α1 = 1 is a choice that requires
almost no information-processing capacity, so two cases are identical. 15

The γ = 0.5 parameterization, on the other hand, requires the agent to balance current
processing needs with future income desires. When α1 is fixed, the agent places weight on
consumption possibilities he would not consider when he is offered the choice of α1. That
is, when γ = 0.5, giving the agent the ability to reduce his processing capacity in exchange
for increases in expected future income results in a change in the behavior of the agent.
From Table 1, we see that when given the opportunity, the agent will give up 70% of his
information-processing capacity in exchange for improvements in his future income. The op-
timal allocation of “precision” changes when the total amount of precision to be allocated
changes. First, note that the levels of wealth and their associated probabilities are identi-
cal in panels 12(a) and 12(b). That is, for example, the probability of w = 0.025 is the
same in both panels. Next, note that the agent assigns probability to consumption possi-
bilities when α1 is exogenously-fixed at 1 that he ignores when α1 is endogenously set to
0.3. Additionally, note that the probability is placed more heavily on the feasible boundary
when α1 is fixed, and that consumption appears to be more strongly correlated with wealth.
That is, when α1 is determined endogenously, the probability mass of consumption at each
of the three possibilities is spread more uniformly across wealth levels when compared to
the exogenously-fixed α1 choice. These differences are all a result of using less information-
processing capacity. First, when the amount of information-processing capacity decreases,
the agent can compensate by paying attention to fewer things. This is accomplished by con-
sidering a smaller set of consumption possibilities. By eliminating higher consumption levels,
the agent is able to “spend more” of his information-processing capacity on the remaining
three levels. In addition to this, the remaining consumption-wealth pairings will have less
precise conditional distributions. The problem can be thought of as one of allocating a total
pool of precision, or attention. First, the agent can reduce the number of (c, w) pairings over
which he is trying to be precise, and then lower the precision of pairings still to be consid-
ered. The mathematics of the problem boil down to how much “correlation” (more precisely
mutual information) can be represented in the optimally chosen joint distribution. As the
agent reduces information-processing capacity, the optimal choice of the joint distribution
must imply a weaker relationship between c and w. It is important to remember that the
agent is choosing to give up the information processing capacity that represents the differ-

15 Note that the only mutual information “connection” between c and w implied by the joint
distribution in panel 12(a) concerns feasibility of the lowest positive consumption node. Beyond
that, the distribution implies independence, thus the very low mutual information content and
therefore information-processing requirement.
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ence between panels 12(a) and 12(b). The information-processing capacity is being traded
for future income prospects, meaning that the agent is acting optimally when he chooses to
move from panel 12(a) to 12(b).

The optimal path of α is given in figure 13. Returning to the higher risk aversion specification
(γ = 2), the amount of information-processing required for the first period is nearly zero, but
the second period makes use of a significant amount. This is done for two reasons, the first
of which is that it is no longer optimal to save nearly all income in the second period. The
“buffer-stock” accumulation of the first period gives way to a lower marginal expected savings
rate. Second, the space of potential wealth levels doubles from period 1 to period 2. 16 These
two effects combine to make the optimal choice for the high risk aversion parameterization
essentially a coin-flip over two higher levels of consumption than he consider in the first
period (see figure 11). It should also be noted that period 2 represents the period in which
the representative agent places probability on the highest consumption node he will consider
during periods 1-5. This statement must be differentiated from describing the aggregate
consumption path, which clearly continues to rise in subsequent periods for the high risk
aversion agent. What is meant here is that the agent solves his attention allocation problem
in such as way as to place weight on higher levels of consumption in period 2 than he did in
period 1, and that he does not continue to consider even higher levels again in period 3. That
is, the agent has reached the levels of consumption sustainable given his lifetime expected
income by period 2. The next few working periods (3-5) are a process of fine-tuning the
consumption choice, as seen by the fact that the γ = 2 parameterization places the majority
of the weight on a single consumption level in periods 3 through 5.

The low risk aversion parameterization (γ = 0.5) also needs more processing power in the
second time period due to the increase in the size of the wealth space. However, when γ = 0.5,
the agent’s consumption choices do not need to grow as much relative to the first period as
the higher risk aversion parameterizations, so his need for information-processing capacity
growth is much less sharp. Still, he continues to use more processing power than his high
risk aversion counterpart because he wants to be able to consider more points than the high
risk aversion parameterization.

To explain why the low risk aversion agent wishes to consider a broader range of consumption
nodes than the higher risk aversion agent for a given wealth distribution, we examine figure
14, the joint distributions in period 6 – the period just before retirement. Before progressing,
it must be clearly understood that the α-path for all parameterizations goes to one for
periods 6-8 because of the tradeoff used in the model. Agents trade information processing
capacity for benefits in their next period’s income distribution. At retirement, the agent
stops receiving income, so because there is no income in period 7 or 8, there is no reason
to spend time trying to improve it in periods 6 and 7 (there is no “future” following period
8, so similarly there is no incentive to give up any processing capacity). Beginning in the

16 The agent begins with an initial wealth level equal to a flat one-period income distribution with
no weight on zero. When the agent moves to the second period he gets his K-node period income
distribution whose lowest node is zero. As a result, the first period had K wealth levels while the
second period has K + (K − 1) wealth levels.
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period directly before retirement, the agent no longer has anything to trade for his processing
capacity, and as a result, the amount of information processed in period six (α6 = 1) is nearly
three times that of previous periods. One aspect of this model is that the agent anticipates
this increase in processing power and is waiting to increase consumption once it arrives.

To return to the question of how risk aversion impacts the range of consumption levels
considered given a wealth distribution, figure 14 demonstrates that while the anticipated ex-
plosion of processing power does, in fact, cause agents with each parameterization to expand
their attention considerably, a central difference between high and low risk aversion can be
seen. Low-γ agents spread their attention more broadly, strategically spacing consumption
allocation so that they can cover more of the consumption-wealth space with some accu-
racy, while high-γ agents focus more intently on a smaller number of points, paying special
attention to the lower levels to guarantee precise behavior there. For example, in Sims’s
undiscounted two-period case discussed earlier, given a marginal distribution for wealth, it
is clear that the optimal unconstrained choice would be to choose c = w/2 for every w. It
was demonstrated that, in the information-processing constrained world (his figures 5 and
6), the less risk averse agents will spread their attention over a larger region of the (c, w)
space, discretely, so as to generate adequate consumption over a broader range of wealth.
That is, the consumption conditionals are centered around the c = w/2 optimum but give
up tightness around the optimum and careful examination of lower consumption nodes for
the ability to focus attention on consuming at higher levels when wealth is, in fact, high.
The agent has a total amount of “preciseness” that can be used. He could, for example, be
very precise around a few levels of wealth by forming very tight conditional distributions
around ci = wj/2 for several wj’s. Or, he could be very imprecise around every wj. Where
and how the agents wish to be precise is a function of their preferences. More risk averse
agents give up higher consumption in the high wealth state for the ability to consume more
accurately at lower wealth levels, meaning tighter distributions around the optimum and
fewer gaps in attention overall at lower consumption levels. They do this because they are
concerned about consumption-wealth mismatches at lower wealth levels and want to be able
to consume everything up to their boundary in these cases. Further, they are willing to pay
the price of moderate consumption in high wealth states in order to do so.

This result, that lower risk aversion agents will spread their attention across more consump-
tion possibilities, combined with the fact that they reach a sustainable level of consumption
by period 2, accounts for the relatively flat nature of the α-path for γ = 0.5 in figure 13.
Similarly, the high risk aversion agent has more spread-out consumption behavior in period
2 because by saving heavily in the first period, he has increased his potential wealth to a
point where there is very little probability of a low wealth state, therefore it does not take a
large amount of information-processing capacity to have tight conditionals at the few wealth
levels he considers to be “low.” (Note the tight conditional distributions for consumption
given the lower three wealth levels in figure 15.) Because he is able to behave cautiously at
low wealth levels at a fairly low “attention” cost, he is able to consider a consumption lottery
that is essentially a coin flip over two higher consumption levels.

In exchange for giving up processing capacity, the agent receives the same thing in each
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time period: improvement in the next period’s income distribution. Therefore, the varia-
tions in α must represent variations in the value of information-processing over time. Just as
consumption-smoothing is the optimal result of the canonical model, there could be informa-
tional smoothing in inattention models as well. Future research will include an examination
of differences in the marginal value of processing capacity that could cause a sort of infor-
mation smoothing over time that could explain the type of “over-shooting” observed in the
α-path of the log-preferences agent in figure 13.

Figure 16 indicates that the wealth distributions are similar across the three γ specifica-
tions. As wealth grows, the distributions spread out and as agents dissave, their wealth
distributions collapse on a small number of points. When the representative agent reaches
the point of retirement, he wants to eat from his savings as much as possible, but there is
a struggle between not wanting to leave anything on the table and not wanting to have a
high probability of zero consumption in the final period. As can be seen in the final pane
of figure 16, each wealth distribution collapses on a point, though the point is different for
each parameterization. The distance of that “collapsing point” from the origin and the shape
around the point is a function of the agent’s preferences regarding zero consumption: more
highly-risk-averse agents bring their final wealth distribution to a sharper point than their
less cautious counterparts, and that point is shifted to the right to ensure safety regarding
zero-consumption. The “sharpness” of the final wealth distribution is increasing in γ be-
cause of the effect described earlier regarding how agents allocate their attention. Because of
the focus of the higher risk aversion parameterization on a smaller number of points, these
agents tend to eliminate probability weight from certain regions in the wealth distribution
while leaving other regions untouched. This behavior is different from lower risk aversion
parameterizations which tend to eliminate some probability from a large number of nodes
rather than all probability from a small number of nodes. As a result, highest probability
weight in the high risk aversion parameterization is higher than it’s counterpart in the lower
risk aversion parameterizations.

As a result of the inability to eliminate uncertainty, we observe in this model what have
been called “accidental bequests” [see e.g. Hendricks (2002)]. These bequests result not from
uncertainty regarding time of death, but from uncertainty arising from an inability to process
all the information available. As is seen in figure 17, the expected bequest is increasing in
γ. Note that according to figure 17, the representative agent (with CRRA preferences and
γ = 2) has a 20% probability of leaving behind a bequest at least as large as a full period’s
consumption (just under seven years’ worth).

6 Conclusions

Building on the ideas in the two-period model of Sims (2006), this paper presents a sim-
ple life-cycle framework for addressing the optimal allocation of attention to decisions over
time. The framework is fully scalable in a finite-horizon model and could be used to study
optimal behavior under processing constraints in more general economic environments. In
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the framework studied here, the value of information-processing capacity varies over time,
and the agent’s degree of risk aversion plays a significant role in determining that value. Life
cycle agents with finite information-processing capacity display the hump-shape pattern of
consumption observed so frequently in the data. Additionally, the struggle between wanting
to consume as much as possible and wishing to avoid zero consumption can lead to a high
probability that an agent will leave behind non-trivial wealth at death, thus generating an
“accidental bequest” that is solely an artifact of imprecise knowledge.
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Fig. 12. The Choice of Joint Distribution in the First Period for the Fixed- and Flexible-α Cases.
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A On the Entropy Effects of the Income Process

In equation (8), the mean of the time t income process is controlled by the value of αt−1.
What is seen in figure 4 is that in addition to the mean effect, there is also an effect on the
entropy of the income distribution. As αt−1 gets closer to zero, more and more probability
weight is taken from low income values and moved to high income values. This has the
effect of reducing the entropy of the income process (concentrating more weight on fewer
points reduces entropy). This, in turn, influences the entropy of the wealth distribution in
the subsequent (and therefore every future) period. Thus, while the original intent of the αt

tradeoff was to represent the optimal mixing of two goals — increasing future income and
increasing current processing capacity — the entropy-reducing side-effect of this particular
income process potentially muddles the interpretation of the tradeoff represented by αt.

The ideal solution to this problem would be to use an entropy-neutral (with respect to αt−1)
income process. This solution, however, is problematic. The existing income process removes
probability from lower-income and places it on higher income values. This monotonically
increases the mean and decreases the entropy of the income distribution. What is required
is an income process whose shape does not change at all as the mean is increased by the
αt parameter. For example, a univariate Gaussian distribution with mean µ and standard
deviation σ has a theoretical entropy value of 1/2 log(2πe) + log(σ), which only depends on
σ and therefore, any αt−1 scheme that shifts the distribution by making µ a simple function
of αt−1 should achieve this entropy-neutral property.

However, employing a discretization of the Gaussian distribution on the wealth grid elim-
inates the tidiness of the theoretical entropy calculation. Consider the following income
process: a discretized Gaussian distribution where µ = (1− αt−1)µHIGH + αt−1µLOW . Thus,
as αt−1 → 0, the agent is making the mean higher and higher, just as in the original process.
The standard deviation of the discrete distribution is σ (fixed), which on a continuum, fixes
the entropy of the income process. The discretization is accomplished by finding the value of
the kernel of the N(µ, σ) distribution at each income node and then dividing by the sum to
normalize the income process making it sum to one. Suppose that µHIGH = 14, µLOW = 7,
σ = 1 and the income grid is the integers from 0 to 21. Figure A.1 shows the mean and
entropy of the income distribution for αt−1 ∈ [0, 1].

What is seen in figure A.1 is the result of a continuous choice for αt−1 and its effect on a
discrete grid. Note that the entropy values in this example (given on the right y-axis) differ in
the seventh decimal place. This is a very small variation in the entropy, but from a numerical
optimization point of view, catastrophic. The sine-wave pattern of entropy creates an effect
that makes determination of the optimal choice of αt−1 extremely difficult, as indicated by the
optimizer’s inability to find an optimum under this income formulation, despite such a tiny
change in entropy. While the change in entropy is very small, the derivatives are large and
this problem becomes much like trying to numerically optimize a nonlinear problem whose
constraint set can be thought of as a golf ball: many symmetric, equal-sized peaks and valleys.
Having a numerical optimizer find an optimal tangency on that surface is theoretically very
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Fig. A.1. The Entropy and Mean of an Income Process for αt−1 ∈ [0, 1].

difficult, and in practice likely impossible. Therefore, while the original model has an income
process in which entropy is monotonically increasing in αt−1, it is at least optimizable. The
peaks of figure A.1 are associated with the integer values between µHIGH and µLOW . This
sine-wave pattern exists for any continuous choice of αt−1 on a discrete grid. The problem
is a result of small changes in entropy due to moving tiny probability weights from lower
portions of the support to higher portions of the support, as a result of changes to αt−1.

The goal remains unsatisfied: a discrete distribution for income in which αt−1 has no effect
on entropy while controlling the mean. One way of having two distributions over the same
support p and q with the same entropy and different resulting means would be to have p be
a simple re-ordering of q. That is, pi = qj for some i and j. Imagine a scenario where q is
a discretized Gaussian distribution with the conventional bell shape. It is possible to have
p be simply the probabilities from q lined up in ascending order, over the same support.
Thus, H(p) = H(q) but E(p) > E(q). Another option would be to have a small uniform
distribution that shifts (e.g. a three-node pdf with 1/3 weight on each node), where αt−1

controlled which three nodes received probability. Either of the two potential solutions men-
tioned here require some kind of discretization of the choice of αt−1, which dramatically
complicates the problem. Allowing the choice of αt−1 to be from some discrete list (e.g.
αt−1 ∈ {0, 0.1, 0.2, . . . , 1}), transforms the optimization problem into what is known as a
mixed-integer nonlinear programming (MINLP) problem. These problems are the subject of
the edge of optimization theory, are ill-tempered even under the best of circumstances and
are not, at this time, a practical research avenue for this problem. 17

17 The method commonly used to solve these problems (known colloquially as “branch and cut” or
“branch and bound”) is unreliable to implement on a problem with this structure, given the high
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A potential solution to the entropy-neutrality problem within the context of the above dis-
cussion using a continuous αt choice would be to modify two probability nodes from the
discretized Gaussian distribution generated by αt−1. One could theoretically alter two of the
probability nodes to achieve two simultaneous goals:

• The modified distribution has a specific entropy, fixed to eliminate the wave in figure A.1.
• The modified distribution sums to one.

This process could theoretically be used to zero out the effect seen in figure A.1, but the
process would essentially involve finding the solution to the equation p log(p) = C, and
therefore mean an internal optimization designed to push the objective of the optimization
minp p log(p) − C to zero, from the point of view of the computer, not just to an arbi-
trary tolerance chosen by the user. If the computer does not zero out the entropy difference
completely, the problem illustrated in figure A.1 would persist. The internal optimization
described here is very time-consuming (asking a computer to iterate on a problem, using
smaller and smaller steps until “machine zero” is reached), if not computationally infeasible.
Before this is pursued, it is reasonable to ask if the effect we are attempting to eliminate is
important to the model results. The “side effect” we are trying to eliminate would allow the
agent to get both higher expected income and lower uncertainty about that income. Is the
agent interested in this side effect, or is the increase in the expected income the sole reason
for the agent’s choice of αt?

A.1 Is the entropy feedback effect being used by the agent?

While it is potentially infeasible to use a continuous αt−1 to change the mean of the discrete
income process in an entropy-neutral way, it is possible to use a continuous choice of αt−1 to
change the entropy of the income process while leaving the mean of the distribution intact.
Consider the following income process:

b′t(er|αt−1) =
(K2 − (r −M)2)(1−αt−1)Z

K
∑

s=1
(K2 − (s−M)2)(1−αt−1)Z

(A.1)

where M is the middle node of the income grid. This process is uniform when αt−1 = 1, and
as αt−1 → 0, weight is moved from the tails of the distribution to the center. Thus, the mean
of the income distribution never changes, but the entropy monotonically increases in αt−1.

Optimizing using this process will let us examine the tradeoff purely between information-
processing capacity and the entropy of the future income process. The agent will have the
ability to process more information “today”, or have a more certain income “tomorrow.”

dimensionality and complexity of the problem that remains after stipulating a vector of αt’s. For a
quick overview of MINLP’s, see Bussieck and Pruessner (2003) and the references therein.
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Fig. A.2. Mean-Neutral Income Process for Several αt Choices, K = 7, M = 4, Z = 20

The expected income for “tomorrow” will not change, regardless of the agent’s choice of α.
What we see in figure A.3 is that the choice is clear: the agent prefers processing power to
lowering the entropy of the income process, regardless of time period. That is, the agent will
devote all his “energy” (as evidenced in αt being pushed to the boundary αt = 1, ∀t) to one
activity: information-processing; and completely ignore the alternative activity of reducing
the entropy of the income process. This tradeoff is of no interest to the agent.

Figure A.3 demonstrates that the agent is unwilling to give up any processing power currently
to reduce the entropy of the future problem. Later, we will look at the optimal choices for
αt−1 given the original income process (the one specified in equation (8)). The role of Z is to
control how entropy is affected by changes in αt−1. The value for Z used to create figures A.2
and A.3 changes entropy at 10 times the rate of the entropy change in the original income
process (the process in equation 8 which is the mean-shifting process), and values up to 50
times the rate of change in the original income process were tested with no effect on the results
seen in figure A.3. The exercise performed here for much more extreme parameterizations
indicate that we can look at the optimal choices for αt−1 under the original specification
with reasonable expectation that the agent is making use of the feedback effect in order to
get future and current benefits out of the income/processing-capacity tradeoff.

Therefore, while the current income process includes a feature that could be seen as a poten-
tial wrinkle in the model results, the important feature of monotonicity compensates for the
inconvenience of the change in entropy, and the entropy effect appears to be inconsequential
from the perspective of maximizing expected utility.
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